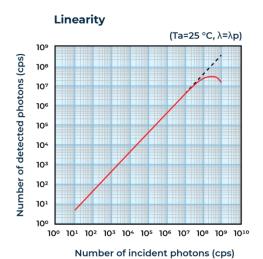


Configuring a SPAD detector

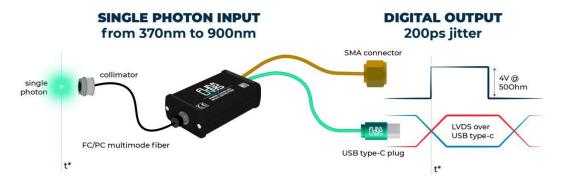


a - Double check the characteristics of your setup to determine whether our SPAD is a suitable choice for your requirements regarding photon detection efficiency and linearity.

Photon detection efficiency vs. wavelength

The sensitivity of our SPAD detector peaks at 450nm, while its spectral response range spans from 370nm to 900 nm.

Key tech specs


Our fiber-coupled USB-powered SPAD detector yields a <200 ps timing jitter coupled with 7cps of dark count rate. The throughput linearity is maintained up to 3.5Mcounts/s of incident photons.



- **b** Connect a FC/PC multimode fiber to the input signal port (1).
- c Connect one of the LVDS output ports (5 or 6) specifically to the <u>FLIM Data Acquisition Card</u> using an USB type-C cable or use the 4 V LVTTL 50 Ohm single ended output (4) to connect the SPAD to any brand of data acquisition card through a SMA coaxial cable.
- **d -** Power the SPAD detector via standard USB type-c port **(5 or 6)** or via a 2.1/5.5 mm coaxial connector **(2)** using a wall-mount DC converter (recommended values are 9 V DC –1 A max). Ensure that the status LED **(3)** displays a green light while in operation.

Connection example

POWER SUPPLY AND USB type-C SIGNAL INTERFACE

Copyright © FLIM LABS S.r.l. www.flimlabs.com | info@flimlabs.com